Momento angolare e processi di collisione

- •Invarianza per rotazioni e conservazione del momento angolare
- •Parametro d'impatto e momento angolare
- •Potenziale centrifugo
- •Meccanica classica e meccanica quantistica: sviluppo in onde parziali
- •Stima del momento angolare in processi di collisione
- •Spin e composizione dei momenti angolari
- •Regole di selezione collegate alla conservazione del momento angolare

Invarianza per rotazioni e conservazione del momento angolare

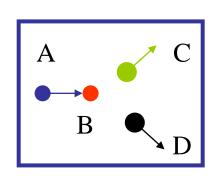
- •C'è una relazione generale, in fisica classica e quantistica, fra invarianze e leggi di conservazione
- •All'invarianza delle leggi fisiche per traslazioni spaziali e associata la conservazione dell'impulso \mathbf{P} , alle traslazioni temporali la conservazione dell'energia \mathbf{E} , alle rotazioni il momento angolare totale \mathbf{J} .
- •In questo capitolo esamineremo alcune conseguenze della conservazione del momento angolare nei processi d'urto, prima in fisica classica e poi in fisica quantistica.
- •Ripartiamo dunque dalla definizione operativa della principale osservabile dei processi di collisione, la sezione d'urto, ed esaminiamo l'interpretazione che ne abbiamo dato, nel semplice modello geometrico finora considerato.

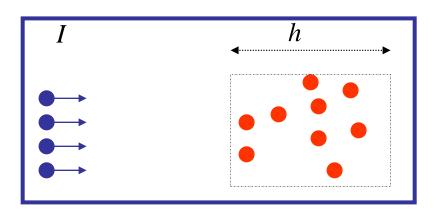
La definizione operativa di sezione d'urto

- Ripartiamo dalla definizione operativa che abbiamo dato
- Supponiamo di voler studiare la reazione A+B→C+D mandando un fascio di particelle A contro una "targhetta" (=target, bersaglio) di particelle B.
- Il fascio è caratterizzato dalla "corrente" *I* (numero di particelle prodotte per unità di tempo), dal tipo di particelle e dalla loro energia.
- La "targhetta" è caratterizzata dalla densità di bersagli (numero/volume) *n* e dallo spessore *h*.
- La quantità misurabile è il numero di reazioni per unità di tempo $\Delta N/\Delta t$.
- Se la targhetta è sottile (cioè è piccola la probabilità che ciascun proiettile faccia una collisione) il numero di reazioni che avvengono nell'unità di tempo è proporzionale alla corrente, alla densità e allo spessore:

$$\Delta N/\Delta t = I n h \sigma$$
.

• La costante di proporzionalità, che ha le dimensioni di [L]², si chiama sezione d'urto della reazione A+B→C+D





L'interpretazione della sezione d' urto

- Supponiamo che la reazione A+B → C+D avvenga quando le particelle A e B si trovino a distanza d<r, con probabilità w.
- Per ciascuna particella (i) che entra nel bersaglio, la probabilità P_i di effettuare una reazione sarà data dal numero di incontri N_i che avvengono con distanza d <r, moltiplicata per la probabilità di reazione w in ciascun
- Se medio su tante particelle $N_i \rightarrow \langle N \rangle = \pi r^2 n$ h $e P_i \rightarrow \langle P \rangle = \pi r^2 w n h$
 - Se I è il numero di particelle che entrano nel bersaglio nell'unità di tempo, il numero di interazioni nell'unità di tempo sarà I<P> e

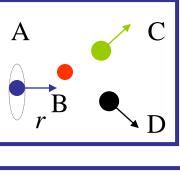
$$\Delta N/\Delta t = I n h \pi r^2 w$$

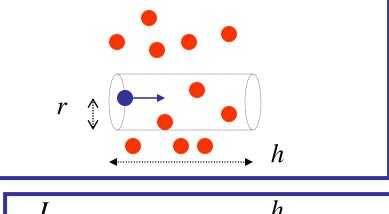
incontro, P_i=N_iw *.

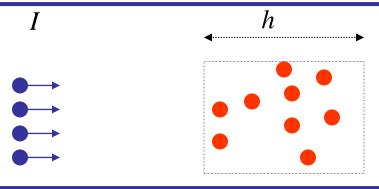
dunque:

Confrontando con la definizione di σ data da $\Delta N/\Delta t = I n h \sigma$

• ne ricavo: $\sigma = \pi r^2 w$ *Questo è vero per una targhetta "sottile"in cui la





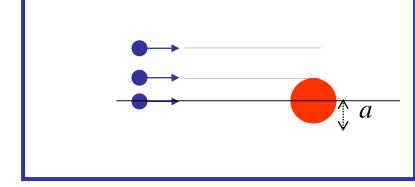


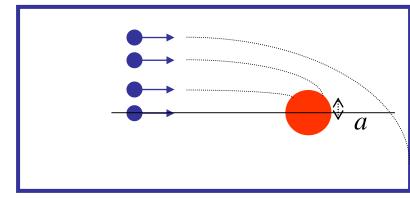
La sezione d'urto rappresenta il prodotto dell'area geometrica in cui avviene l'interazione per la probabilità che la stessa 4 avvenga.

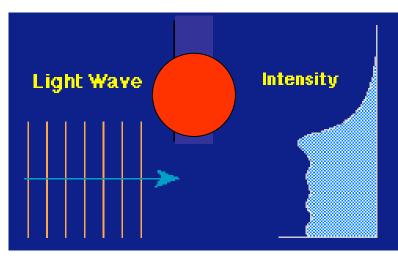
L'interpretazione della sezione d' urto

- Ci sono due grosse semplificazioni nell'analisi che abbiamo fatto:
 - 1) Abbiamo supposto che il moto fosse libero fino alla zona di interazione (a)*, cioè che non ci fossero forze fuori di questa
 - 2)Abbiamo analizzato il problema in termini geometrici, cioè abbiamo trascurato l' aspetto ondulatorio del moto delle particelle che stanno urtando

• *)Indichiamo d'ora in avanti con a le dimensioni della zona di interazione, che prima chiamavamo r e usiamo questo simbolo per esprimere la distanza fra le particelle durante la collisione





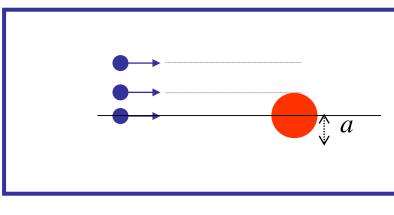


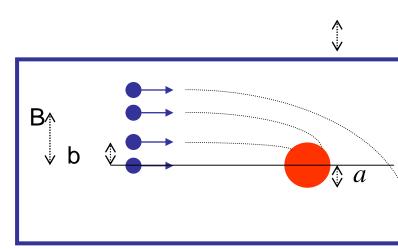
Gli effetti delle forze "a lungo raggio"(1)

- Teniamoci per adesso nella fisica classica (=non quantistica) ed andiamo a studiare la deflessione delle orbite, per chiederci quali sono quelle particelle che riescono a raggiungere il bersaglio.
- Sia b il parametro d'impatto e V la velocità iniziale della particella, di massa m *
- Si tratta di determinare il massimo parametro d'impatto (B) per cui l'orbita sfiora la regione d'interazione (a) cioè determinare quel b per cui l'orbita è tangente alla sfera di raggio a
- Supponiamo che il moto relativo sia descritto da un potenziale U che tende a 0 per distanze grandi.
- Dalla conservazione dell'energia ho che durante l' urto:

$$\frac{1}{2}$$
 m v² + U = $\frac{1}{2}$ mV²

*In questo paragrafo consideriamo velocità non relativistiche





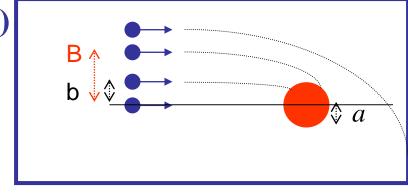
Gli effetti delle forze "a lungo raggio"(2)

- Supponiamo che il potenziale sia centrale cioè U=U(r)
- Il momento angolare L_{tot} è conservato e quindi:
 - A)il moto è in un piano
 - B) Separando la velocità nella sua componente radiale v_r =dr/dt e normale ad essa v_n la quantità *L*= m r v_n è costante durante la collisione. Il valore iniziale è *L*=mVb, dunque durante il moto:

$$v_n = Vb/r$$

- Quindi la conservazione del momento angolare fissa il valore di lungo la traiettoria.
- Se tengo conto di questo e di v²= v_r ²+ v_n ² posso riscrivere la conservazione dell'energia come:

$$\frac{1}{2}$$
 mV² = $\frac{1}{2}$ m ($v_r^2 + v_n^2$) + U(r) = = $\frac{1}{2}$ m $v_r^2 + \frac{1}{2}$ m V² b²/r² + U(r)



- Se l'orbita è tangente in a significa che per r=a si ha v_r=0. Questo determina B:
- $B^2=a^2[1-U(a)/(\frac{1}{2}mV^2)]$
- L'espressione per la sezione d'urto che prima scrivevamo $\sigma = \pi a^2 w$

va dunque modificata in
$$\sigma = \pi B^2 w$$

$$= \pi a^2 w \left[1 - U(a) / (\frac{1}{2} m V^2) \right]$$

Da osservare che se ½mV²>>U(a) si ritrova l'espressione precedente, altrimenti, si ha un fattore di correzione, positivo o negativo a seconda che il potenziale sia attrattivo (U<0) ho repulsivo (U>0) 7

La barriera centrifuga

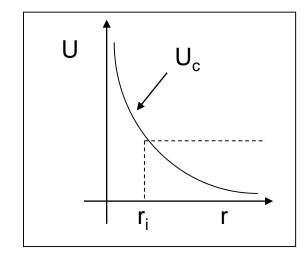
• La conservazione del momento angolare ha trasformato un problema tridimensionale in un problema unidimensionale, dove r(t) è determinabile dall'equazione dell'energia:

$$\frac{1}{2}$$
 m ($\frac{dr}{dt}$) 2 + $\frac{1}{2}$ m V^{2} b^{2}/r^{2} + $U(r)$ = $\frac{1}{2}$ m V^{2}

 Posso riscrivere il secondo termine come un potenziale centrifugo:

$$U_c(r) = \frac{1}{2} \text{ m } U^2 \text{ } b^2/r^2 = \frac{L^2}{(2mr^2)}$$

- Il moto della coordinata radiale è dunque determinato da un potenziale effettivo U_{eff}(r)=U+ U_c
 - dove il secondo termine rappresenta una barriera, detta barriera centrifuga.
- La minima distanza di avvicinamento (r_i) fra due particelle dipende dall'energia e dal momento angolare, ed è determinabile dalla condizione (dr/dt) =0



- Per una fissata energia la minima distanza di avvicinamento cresce al crescere del momento angolare.
- I processi che avvengono a distanze "piccole" sono dunque quelli in cui è "piccolo" il momento angolare.
- La relazione quantitativa fra le quantità dipende dalla forma del potenziale. Se si trascura questo si trova immediatamente:

$$r_i^2 = L^2/(mV)^2$$

8

Ossia, in termini dell'impulso p=mV:

Lo sviluppo in onde parziali

- Sulla base di quanto appena detto è naturale generalizzare l'interpretazione della sezione d'urto: per ciascun parametro d'impatto b e per ciascun valore dell'impulso p=mV ci sarà una specifica probabilità, w= w(b, p).
- La sezione d'urto conterrà contributi da ciascuna corona circolare con peso w:

$$\sigma = 2\pi \int db \ b \ w(b, p)$$

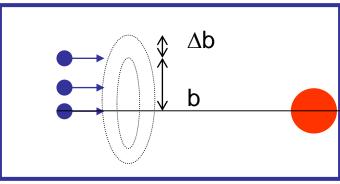
• Utilizzando la relazione L=pb si può cambiare variabile di integrazione e scrivere:

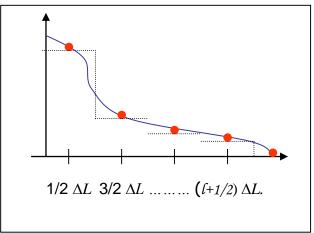
$$\sigma = (2\pi/p^2)\int dL L w(L, p)$$

• Sia ΔL una quantità sufficientemente piccola di momento angolare; posso allora trasformare l'integrale in una serie, in cui calcolo l'integrando nel punto $L=(l+1/2) \Delta L$:

$$\sigma = (\pi/p^2) \Delta L^2 \Sigma_{\ell}(\ell+1/2) w(\ell, p)$$

• La quantizzazione del momento angolare orbitale consiste nel fatto che ΔL non è arbitrariamente piccolo, ma vale $\Delta L = \hbar$





Da cui

$$\sigma = (\pi \hbar^2/p^2) \Sigma_{\ell}(\ell+1/2) w(\ell, p)$$

• Questa espressione, che rappresenta il risultato fondamentale, è lo sviluppo in onde parziali della sezione d'urto.

Meccanica classica e meccanica quantistica

- Le espressioni da confrontare sono:
 - (1) $\sigma = 2\pi \int db \ b \ w(b, p)$ (2) $\sigma = (\pi \hbar^2/p^2) \Sigma_{\ell}(\ell+1/2) \ w(\ell, p)$
- È chiaro che non posso dimostrare (2) da (1), nel senso che non posso "ricavare" la meccanica quantistica dalla meccanica classica.
- È invece possibile il viceversa: quando i momenti angolari che contano nel processo sono molti, la formula classica (1) è una buona approssimazione del risultato quantistico (2).
- Se sono interessato a processi che avvengono a una scala di distanze a ed ho a disposizione un impulso p, il momento angolare tipico del processo è L=pa. La condizione $L>>\hbar$ significa dunque:

$$p a \gg \hbar$$
.

- Questa è una conseguenza del principio di indeterminazione: per esplorare dimensioni dell'ordine di a sono necessari impulsi maggiori di ħ/a.
- Da notare che la meccanica quantistica introduce naturalmente una scala di lunghezza $\lambda = \hbar/p$ (e quindi di area) nella (2).
- Le sezioni d'urto dipendono dunque dalla distanza a alla quale avviene l'interazione ("il range del campo di forze) e da λ ; delle due quantità domina quella che è più grande.

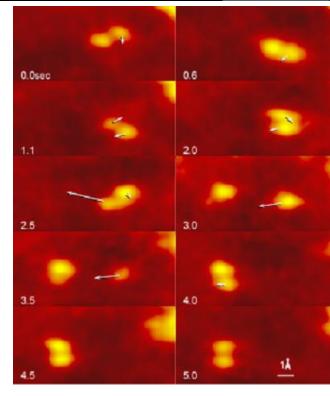
Alcune proprietà delle w

- La teoria dell'urto quantistico stabilisce alcune proprietà generali delle w(l,p), in termini della :
- 1. Unitarietà in onde parziali
- 2. Comportamento a basse energie
- 3.Comportamento in vicinanza della soglia
- 4. Comportamento in presenza di una risonanza
- Questr questioni sono importanti, e verranno affrontate nel corso sulla teroia della diffusione.

Le distanze esplorabili

a (cm)	pc(eV)	E_{γ} (eV)	$T_{e}(eV)$	$T_p(eV)$	Note
10^{-8}	$2 10^3$	$2 \cdot 10^3$	4	$2 \cdot 10^{-3}$	e e p NR
10^{-13}	$2 \cdot 10^8$	$2 10^8$	$2 10^8$	$2 10^7$	p NR
10^{-16}	$2 10^{11}$	$2 10^{11}$	$2 10^{11}$	$2 10^{11}$	

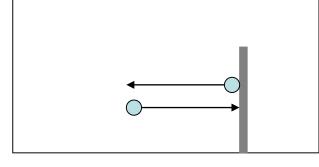
- Per esplorare dimensioni dell'ordine di a sono necessari impulsi maggiori di $p=\hbar/a$. Si può stimare questo minimo valore di p da $pc=\hbar/c/a$ =200MeV fm/a = 2 10 -5 eVcm/a e valutare le corrispondenti energie per γ , e, p (per e e p sono riportate le energie cinetiche, T=E-m)
- Sono necessari raggi X per poter vedere le dimensioni di un atomo, mentre già ad energie termiche nelle collisioni atomo atomo vale il limite geometrico
- Nelle collisioni di un neutrone termico con un nucleo, la sezione d'urto è dominata dalla lunghezza d'onda del neutrone, non dalle dimensioni del nucleo
- Per esplorare dimensioni nucleari, cioè vedere l' interno di un nucleo occorrono elettroni con energie di almeno centinaia di MeV

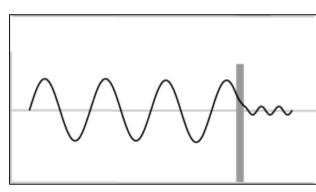


Per esplorare distanze dell' ordine di 10⁻¹⁶cm, alle quali sono rilevanti le interazioni deboli, sono necessarie almeno centinaia di GeV₁₂

Distanze esplorabili e distanze accessibili

- Il principio di indeterminazione, se da un lato impone limitazioni alle distanze che si possono esplorare in dettaglio, dall'altro permette di accedere a distanze classicamente inaccessibili.
- Classicamente, una particella con energia cinetica T non può superare una barriera di potenziale U>T. Con questa sonda non si possono avere informazioni su quel che succede al di là della barriera.
- Quantisticamente c'è sempre un'onda trasmessa al di là della barriera.
- La zona oltre la barriera, classicamente proibita, è accessibile per l'onda, sia pure con probabilità esponenzialmente piccola (P≈ exp{ [2m(U-T)]^{1/2}L/ħ), dove L è lo spessore della barriera.





 Questo ha importanti applicazioni nei processi d'urto (es.: reazioni di fusione nucleare sotto la barriera coulombiana) e nei processi di decadimento (es.: decadimento α)

La conservazione del momento angolare totale

• Nell'urto di due particelle A e B il momento angolare totale \mathbf{J} è dato dalla somma del momento angolare orbitale \mathbf{L} e degli spin \mathbf{S}_{A} ed \mathbf{S}_{B} delle due particelle. La quantità conservata è $\mathbf{J} = \mathbf{L} + \mathbf{S}_{A} + \mathbf{S}_{B}$ ossia:

$$\mathbf{J}_{\text{in}} = \mathbf{J}_{\text{fin}}$$

- Gli spin di atomi, nuclei e costituenti ultimi della materia sono dell'ordine di \hbar (in particolare, tutti i quarks e i leptoni hanno spin s=1/2, cioè S²=s(s+1) \hbar ² =3/4 \hbar ²). Lo spin ha un ruolo quando il suo valore è confrontabile con L, come in molte collisioni atomiche, nucleari e subnucleari.
- La conservazione del momento angolare ha importanti conseguenze, una per tutte, la conservazione del "numero" dei fermioni (particelle son spin semintero, come i quarks e i leptoni):
- Se nello stato iniziale è presente un numero dispari (pari) di fermioni, nello stato finale ci sarà un numero dispari (pari) di fermioni
- Questo segue dal fatto che, che componendo un numero dispari (pari) di momenti angolari seminteri \mathbf{K}_i la risultante $\mathbf{K} = \mathbf{\Sigma} \mathbf{K}_i$ è semintera (intera).
- Dunque, se il numero iniziale di fermioni è dispari, lo spin totale $S=S_1+....S_n$ è semintero. Poiché il momento angolare orbitale L è intero, il momento angolare totale, J=L+S è semintero. Nello stato finale L'ed S' saranno in generale diversi, ma J'=L'+S'=J e dunque J' è semintero. Poiché L' è intero, dovrà essere S' semintero, e quindi un numero dispari di fermioni. Analogamente se il numero iniziale era pari.
- Notare che non è detto che il numero di particelle nello stato iniziale e finale debba essere lo stesso.

Numero di fermioni, numero di barioni, di leptoni e di fermioni. e numero leptonico

• In ogni processo fisico finora osservato (collisioni o decadimenti) sono conservati il numero barionico B= 1/3 [N(quark)-N(antiquark)] e il numero leptonico L= N(leptoni)-N(antileptoni)]:

$$B_{in} = B_{fin}$$
 e $L_{in} = L_{fin}$

- Questo garantisce che sia conservato il "numero" di fermioni
- Infatti, se nello stato iniziale è presente un numero dispari (pari) di quarks+antiquarks, 3B è dispari (pari). La conservazione di B dà dunque che anche nello stato finale B è dispari (pari) e quindi c'è un numero dispari(pari) di quarks+antiquarks. In maniera analoga per i leptoni.
- Non è detto che L e B siano delle grandezze assolutamente conservate e teoricamente ci si aspetta che L e/o B possano essere violati in alcuni processi.
- La conservazione del momento angolare pone comunque in relazione le variazioni delle due quantità. Se in un processo ho $\Delta B = (B_{in} B_{fin}) = 1$ significa che il numero di quarks più antiquarks è cambiato di una quantità dispari, ma allora anche il numero di leptoni+antileptoni deve essere cambiato di una quantità dispari, quindi

$$\Delta L = (L_{in}-L_{fin}) \neq 0.$$

• Cioè in un processo in cui il numero barionico è cambiato di un'unità anche il numero leptonico deve essere violato. Analogamente $\Delta L=1$ implica $\Delta B \neq 0$

Esercizi

- Calcolare la sezione di cattura di meteoriti con v=10km/s da parte della terra (R=6.000 km) e confrontarla con la dimensione geometrica
- Calcolare la sezione d'urto per cattura nel sole di neutralini con velocità v=200km/s e confrontarla con la dimensione geometrica (R=700.000) km. Calcolare la lunghezza d'onda di neutralini con M=100 GeV
- Un cannone elettronico (tensione V=1KV) spara elettroni contro una sfera conduttrice di raggio r=1cm., inizialmente scarica ed isolata. Calcolare la massima carica che può acquistare la sfera. Se I è la corrente erogata dal cannone, calcolare come varia la carica Q(t) della sfera in funzione del tempo.
- Calcolare la lunghezza d'onda di un neutrone termico e confrontarla con la dimensione di un nucleo